我们随时都会看到短裙美女上下楼梯的景象..
想一窥裙底机密也是有技巧的喔!!
短裙的内部状况大致就跟下图(内附一)所示一样.. 一般"观察者"想看的地方..
其实是半径10公分的半球体部分..
而裙子则与半球体相切并以向下15公分的剪裁..
巧妙地遮住了观察者的视线..
直角三角形opq和orq是全等的.
如果将qr线段(也就是观察者视线)延长并做出另一个直角三角形tsq..
那我们可由计算知道它的高是8.3公分..
tsq的高是底的0.415倍.. 所以..
观察者如果想看到裙底风光..
最低限度是让视线的仰角大於角tqs..
也就是高和底的比值要大於0.415倍.. 接下来.. 我们就要讨论△aeq的问题..
假设观察者(身高170)眼睛的高度是160公分..
而裙摆高度是80公分..
因为眼睛高度比裙摆高度大80公分..
所以裙摆与眼睛的高度差距(线段ae)..
就比楼梯的高低差距(线段cd)小80公分..
因此直角三角型aeq的高和底可用以下两个式子来表示..
高:ae=20×阶数-80
底:qa=25×(阶数-1)
高和底则须满足这个式子:ae≥oa×0.415
我们针对不同的阶梯差距列一张表:
│阶数│1│2│3│4│5│6>│7│8│
│ae│-60│-40│-20│0│20│40│>60│80│
│qa│0│25│50│75│100│125│>150│175│
│比率│*│-1.6│-0.4│0│0.2│0.32│>0.4│0.457│
其中ae是负值的情况.. 就表示裙摆问至还在眼睛下方.. 所以在阶梯差距小於4时.. 观察者是完全看不到裙子底下的..
但是.. 当阶梯数增加到5或6的时候.. 喔喔~~~~就快看到啦!! 等到阶梯差到了8时.. 0.415的障碍也就被破解啦!! 当然.. 这个差距愈大.. 视野也就愈宽广.. 不过可以看到的风光也会愈来愈小..
|